

AZDHS Certification # 00000005LCMI00301434

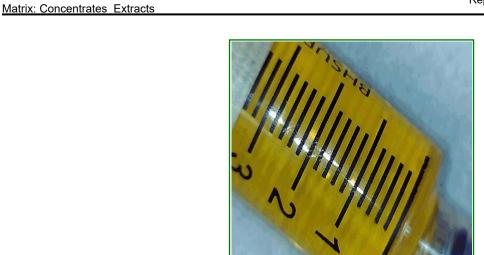
Catalina Hills / Venom

2046 W Ironwood Dr Phoenix, AZ 85021 19289654611

Lic#: 00000016DCCC00020807 Sample Name: Monster GSC Distillate-I

Strain Name: Monster GSC

FINAL


Sample: S308085-01

CC ID#: 2308C4L0077.2504

Lot#: N/A

Batch#: DIMON0817 Batch Size: N/A

> Sample Received: 08/18/2023 Report Created: 08/23/2023

Potency Results

83.4%

Total THC

<LOQ%

Total CBD

RATIO

THC **CBD**

Total THC= THCa * 0.877 + d9-THC Total CBD= CBDa * 0.877 + CBD

SAFETY

Microbials	Residual Solvents	Mycotoxins	Pesticides	Metals
PASS	PASS	PASS	PASS	PASS

7650 E. Evans Rd, Unit A Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434 Fillian Blenney

Technical Laboratory Director

AZDHS Certification # 00000005LCMI00301434

Catalina Hills / Venom

2046 W Ironwood Dr Phoenix, AZ 85021 19289654611

Lic#: 00000016DCCC00020807

Strain Name: Monster GSC

Matrix: Concentrates Extracts

FINAL

Sample: S308085-01

CC ID#: 2308C4L0077.2504

Lot#: N/A

Batch#: DIMON0817 Batch Size: N/A

> Sample Received: 08/18/2023 Report Created: 08/23/2023

Cannabinoids by HPLC-DAD - Compliance

Sample Name: Monster GSC Distillate-I

Date Analyzed: 08/22/2023 Analyst Initials: DRF

Analyte	LOQ	Mass	Mass	Q	
	%	%	mg/g		
THCA	1.57	<loq< td=""><td>< LOQ</td><td></td><td></td></loq<>	< LOQ		
d9-THC	1.57	83.4	834		
d8-THC	1.57	<loq< td=""><td>< LOQ</td><td></td><td></td></loq<>	< LOQ		
CBDA	1.57	<loq< td=""><td>< LOQ</td><td></td><td></td></loq<>	< LOQ		
CBD	1.57	<loq< td=""><td>< LOQ</td><td>M1</td><td></td></loq<>	< LOQ	M1	
CBG	1.57	2.62	26.2		
CBN	1.57	<loq< td=""><td>< LOQ</td><td></td><td></td></loq<>	< LOQ		
CBC	1.57	1.61	16.1		
Sum of Cannabin	oids 1.57	87.7	877	Q3	
Total THC	1.57	83.4	834		
Total CBD	1.57	<loq< td=""><td>< LOQ</td><td></td><td></td></loq<>	< LOQ		

Total THC= THCa * 0.877 + d9-THC. Total CBD= CBDa * 0.877 + CBD. LOQ = Limit of Quantitation; NR = Not Reported; ND = Not Detected. Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Cannabinoids method: HPLC-DAD.

7650 E. Evans Rd, Unit A Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434

Jillian Blaney Technical Laboratory Director

AZDHS Certification # 00000005LCMI00301434

Catalina Hills / Venom

2046 W Ironwood Dr Phoenix, AZ 85021 19289654611

Lic#: 00000016DCCC00020807

Sample: S308085-01

CC ID#: 2308C4L0077.2504 Lot#: N/A

Batch#: DIMON0817

FINAL

Batch Size: N/A

Sample Received: 08/18/2023 Report Created: 08/23/2023

Sample Name: Monster GSC Distillate-I

Strain Name: Monster GSC Matrix: Concentrates Extracts

Pesticides by LC/MS/MS - Compliance

Pass

Date Analyzed: 08/23/20		t Initials: JCE									
Analyte	LOQ	Limit	Units	Q	Status	Analyte	LOQ	Limit	Units	Q	Status
	ppm	ppm	ppm				ppm	ppm	ppm		
Abamectin	0.120	0.5	<loq< td=""><td></td><td>Pass</td><td>Hexythiazox</td><td>0.251</td><td>1.0</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Hexythiazox	0.251	1.0	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Acephate	0.100	0.4	<loq< td=""><td></td><td>Pass</td><td>Imazalil</td><td>0.100</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Imazalil	0.100	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Acequinocyl	0.502	2.0	<loq< td=""><td></td><td>Pass</td><td>Imidacloprid</td><td>0.100</td><td>0.4</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Imidacloprid	0.100	0.4	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Acetamiprid	0.050	0.2	<loq< td=""><td></td><td>Pass</td><td>Kresoxim-methyl</td><td>0.100</td><td>0.4</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Kresoxim-methyl	0.100	0.4	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Aldicarb	0.100	0.4	<loq< td=""><td></td><td>Pass</td><td>Malathion</td><td>0.050</td><td>0.2</td><td><loq< td=""><td>V1</td><td>Pass</td></loq<></td></loq<>		Pass	Malathion	0.050	0.2	<loq< td=""><td>V1</td><td>Pass</td></loq<>	V1	Pass
Azoxystrobin	0.050	0.2	<loq< td=""><td></td><td>Pass</td><td>Metalaxyl</td><td>0.100</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Metalaxyl	0.100	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Bifenazate	0.050	0.2	<loq< td=""><td>M1</td><td>Pass</td><td>Methiocarb</td><td>0.050</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>	M1	Pass	Methiocarb	0.050	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Bifenthrin	0.050	0.2	<loq< td=""><td></td><td>Pass</td><td>Methomyl</td><td>0.100</td><td>0.4</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Methomyl	0.100	0.4	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Boscalid	0.100	0.4	<loq< td=""><td></td><td>Pass</td><td>Myclobutanil</td><td>0.050</td><td>0.2</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>		Pass	Myclobutanil	0.050	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Carbaryl	0.050	0.2	<loq< td=""><td></td><td>Pass</td><td>Naled</td><td>0.125</td><td>0.5</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Naled	0.125	0.5	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Carbofuran	0.050	0.2	<loq< td=""><td></td><td>Pass</td><td>Oxamyl</td><td>0.251</td><td>1.0</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Oxamyl	0.251	1.0	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Chlorantraniliprole	0.050	0.2	<loq< td=""><td>L1, V1</td><td>Pass</td><td>Paclobutrazol</td><td>0.100</td><td>0.4</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>	L1, V1	Pass	Paclobutrazol	0.100	0.4	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Chlorfenapyr	0.502	1.0	<loq< td=""><td>R1</td><td>Pass</td><td>Permethrins</td><td>0.050</td><td>0.2</td><td><loq< td=""><td>M1</td><td>Pass</td></loq<></td></loq<>	R1	Pass	Permethrins	0.050	0.2	<loq< td=""><td>M1</td><td>Pass</td></loq<>	M1	Pass
Chlorpyrifos	0.050	0.2	<loq< td=""><td></td><td>Pass</td><td>Phosmet</td><td>0.050</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Phosmet	0.050	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Clofentezine	0.050	0.2	<loq< td=""><td></td><td>Pass</td><td>Piperonyl butoxide</td><td>0.502</td><td>2.0</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Piperonyl butoxide	0.502	2.0	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Cyfluthrin	0.502	1.0	<loq< td=""><td>V1</td><td>Pass</td><td>Prallethrin</td><td>0.100</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>	V1	Pass	Prallethrin	0.100	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Cypermethrin	0.251	1.0	<loq< td=""><td></td><td>Pass</td><td>Propiconazole</td><td>0.100</td><td>0.4</td><td><loq< td=""><td>V1</td><td>Pass</td></loq<></td></loq<>		Pass	Propiconazole	0.100	0.4	<loq< td=""><td>V1</td><td>Pass</td></loq<>	V1	Pass
Daminozide	0.502	1.0	<loq< td=""><td></td><td>Pass</td><td>Propoxur</td><td>0.050</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Propoxur	0.050	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Diazinon	0.050	0.2	<loq< td=""><td></td><td>Pass</td><td>Pyrethrins</td><td>0.323</td><td>1.0</td><td><loq< td=""><td>M1</td><td>Pass</td></loq<></td></loq<>		Pass	Pyrethrins	0.323	1.0	<loq< td=""><td>M1</td><td>Pass</td></loq<>	M1	Pass
Dichlorvos	0.050	0.1	<loq< td=""><td></td><td>Pass</td><td>Pyridaben</td><td>0.050</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Pyridaben	0.050	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Dimethoate	0.050	0.2	<loq< td=""><td></td><td>Pass</td><td>Spinosad</td><td>0.050</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Spinosad	0.050	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Ethoprophos	0.050	0.2	<loq< td=""><td></td><td>Pass</td><td>Spiromesifen</td><td>0.050</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Spiromesifen	0.050	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Etofenprox	0.100	0.4	<loq< td=""><td></td><td>Pass</td><td>Spirotetramat</td><td>0.050</td><td>0.2</td><td><loq< td=""><td>M1, V1</td><td>Pass</td></loq<></td></loq<>		Pass	Spirotetramat	0.050	0.2	<loq< td=""><td>M1, V1</td><td>Pass</td></loq<>	M1, V1	Pass
Etoxazole	0.050	0.2	<loq< td=""><td></td><td>Pass</td><td>Spiroxamine</td><td>0.100</td><td>0.4</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Spiroxamine	0.100	0.4	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Fenoxycarb	0.050	0.2	<loq< td=""><td></td><td>Pass</td><td>Tebuconazole</td><td>0.100</td><td>0.4</td><td><loq< td=""><td>L1, V1</td><td>Pass</td></loq<></td></loq<>		Pass	Tebuconazole	0.100	0.4	<loq< td=""><td>L1, V1</td><td>Pass</td></loq<>	L1, V1	Pass
Fenpyroximate	0.100	0.4	<loq< td=""><td></td><td>Pass</td><td>Thiacloprid</td><td>0.050</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Thiacloprid	0.050	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Fipronil	0.100	0.4	<loq< td=""><td></td><td>Pass</td><td>Thiamethoxam</td><td>0.050</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Thiamethoxam	0.050	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Flonicamid	0.251	1.0	<loq< td=""><td></td><td>Pass</td><td>Trifloxystrobin</td><td>0.050</td><td>0.2</td><td><loq< td=""><td></td><td>Pass</td></loq<></td></loq<>		Pass	Trifloxystrobin	0.050	0.2	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Fludioxonil	0.100	0.4	<loq< td=""><td></td><td>Pass</td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>		Pass						

LOQ = Limit of Quantitation; NR = Not Reported; ND = Not Detected. Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Pesticides method: LC/MS/MS.

7650 E. Evans Rd, Unit A Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434

Jillian Blaney Technical Laboratory Director

AZDHS Certification # 00000005LCMI00301434

Catalina Hills / Venom

2046 W Ironwood Dr Phoenix, AZ 85021 19289654611

Lic#: 00000016DCCC00020807

FINAL

Sample: S308085-01 CC ID#: 2308C4L0077.2504

Lot#: N/A

Batch#: DIMON0817 Batch Size: N/A

> Sample Received: 08/18/2023 Report Created: 08/23/2023

Sample Name: Monster GSC Distillate-I

Strain Name: Monster GSC Matrix: Concentrates Extracts

Metals by ICP-MS - Compliance

Pass

Date Analyzed: 08/23/2023 Analyst Initials: SML

Analyte	LOQ	Limit	Mass	Q	Status
	ppm	ppm	ppm		
Arsenic	0.098	0.405	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Cadmium	0.098	0.405	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Lead	0.393	1.05	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Mercury	0.393	1.25	<loq< td=""><td></td><td>Pass</td></loq<>		Pass

LOQ = Limit of Quantitation; ND = Not Detected. Unless otherwise stated all quality control samples performed within specifications established by the Laboratory.

Mycotoxins by ELISA- Compliance

Pass

Date Analyzed: 08/22/2023 Analyst Initials: KAM

Analyte	LOQ	Limit	Mass	Q	Status
	ppb	ppb	ppb		
Aflatoxins Total	2.00	20	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Ochratoxin A	4.00	20	<loq< td=""><td></td><td>Pass</td></loq<>		Pass

LOQ = Limit of Quantitation; NR = Not Reported; ND = Not Detected. Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Total Aflatoxins includes Aflatoxins B1, B2, G1, and G2.

7650 E. Evans Rd, Unit A Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434 Tillien Blenney

Jillian Blaney Technical Laboratory Director

AZDHS Certification # 00000005LCMI00301434

Catalina Hills / Venom

2046 W Ironwood Dr Phoenix, AZ 85021 19289654611

Lic#: 00000016DCCC00020807

FINAL

Sample: S308085-01 CC ID#: 2308C4L0077.2504

Lot#: N/A

Batch#: DIMON0817 Batch Size: N/A

> Sample Received: 08/18/2023 Report Created: 08/23/2023

Sample Name: Monster GSC Distillate-I

Strain Name: Monster GSC Matrix: Concentrates Extracts

Microbials Pass

E. coli by 3M Petrifilm- Compliance

Date Analyzed: 08/23/2023 Analyst Initials: KAM

Analyte	LOQ	Limit	Result	Q Status
	CFU/g	CFU/g	CFU/g	_
E. coli	10	100	<10	Pass

Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Aspergillus includes species flavus, fumigatus, niger, and terreus. Salmonella and Aspergillus by Medicinal Genomics.

Aspergillus and Salmonella by qPCR - Compliance

Date Analyzed: 08/23/2023 Analyst Initials: KAM

Analyte	Result	Q	Status
	in one gram		
Salmonella spp.	Not Detected		Pass
Aspergillus	Not Detected		Pass

Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. Aspergillus includes species flavus, fumigatus, niger, and terreus. Salmonella and Aspergillus by Medicinal Genomics.

7650 E. Evans Rd, Unit A Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434 Fillien Blevrey

Jillian Blaney Technical Laboratory Director

AZDHS Certification # 00000005LCMI00301434

Catalina Hills / Venom

2046 W Ironwood Dr Phoenix, AZ 85021 19289654611

Lic#: 00000016DCCC00020807

FINAL

Sample: S308085-01

CC ID#: 2308C4L0077.2504

Lot#: N/A

Batch#: DIMON0817 Batch Size: N/A

> Sample Received: 08/18/2023 Report Created: 08/23/2023

Sample Name: Monster GSC Distillate-I

Strain Name: Monster GSC Matrix: Concentrates Extracts

Residual Solvents by Headspace GC/MS - Compliance

Pass

ppm ppm ppm Acetone 111 1000 <loq< td=""> Pass Acetonitrile 44.2 410 <loq< td=""> Pass Benzene 0.885 2 <loq< td=""> Pass Butanes 553 5000 <loq< td=""> Pass n-Butane 553 <loq< td=""> iso-Butane 553 <loq< td=""> Chloroform 13.3 60 <loq< td=""> Pass Dichloromethane 66.4 600 <loq< td=""> Pass Ethanol 553 5000 <loq< td=""> Pass Ethyl acetate 553 5000 <loq< td=""> Pass Diethyl Ether 553 5000 <loq< td=""> Pass n-Heptane 553 5000 <loq< td=""> Pass</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>		•		itials: SML	Analyst In	Date Analyzed: 08/22/2023
Acetone 111 1000 <loq< th=""> Pass Acetonitrile 44.2 410 <loq< td=""> Pass Benzene 0.885 2 <loq< td=""> Pass Butanes 553 5000 <loq< td=""> Pass n-Butane 553 <loq< td=""> choroform 13.3 60 <loq< td=""> Pass Dichloromethane 66.4 600 <loq< td=""> Pass Ethanol 553 5000 <loq< td=""> Pass Ethyl acetate 553 5000 <loq< td=""> Pass Diethyl Ether 553 5000 <loq< td=""> Pass n-Heptane 553 5000 <loq< td=""> Pass</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	Analyte	Status	Units	Limit	LOQ	Analyte
Acetonitrile 44.2 410 <loq< th=""> Pass Benzene 0.885 2 <loq< td=""> Pass Butanes 553 5000 <loq< td=""> Pass n-Butane 553 <loq< td=""> chloroform 13.3 60 <loq< td=""> Pass Dichloromethane 66.4 600 <loq< td=""> Pass Ethanol 553 5000 <loq< td=""> Pass Ethyl acetate 553 5000 <loq< td=""> Pass Diethyl Ether 553 5000 <loq< td=""> Pass n-Heptane 553 5000 <loq< td=""> Pass Hexanes 35.4 290 <loq< td=""> Pass</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>			ppm	ppm	ppm	
Benzene 0.885 2 <loq< th=""> Pass Butanes 553 5000 <loq< td=""> Pass n-Butane 553 <loq< td=""> iso-Butane 553 <loq< td=""> Chloroform 13.3 60 <loq< td=""> Pass Dichloromethane 66.4 600 <loq< td=""> Pass Ethanol 553 5000 <loq< td=""> Pass Ethyl acetate 553 5000 <loq< td=""> Pass Diethyl Ether 553 5000 <loq< td=""> Pass n-Heptane 553 5000 <loq< td=""> Pass Hexanes 35.4 290 <loq< td=""> Pass</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	2-methylpentane/2,	Pass	<loq< td=""><td>1000</td><td>111</td><td>Acetone</td></loq<>	1000	111	Acetone
Butanes 553 5000 <loq< th=""> Pass n-Butane 553 <loq< td=""> iso-Butane 553 <loq< td=""> Chloroform 13.3 60 <loq< td=""> Pass Dichloromethane 66.4 600 <loq< td=""> Pass Ethanol 553 5000 <loq< td=""> Pass Ethyl acetate 553 5000 <loq< td=""> Pass Diethyl Ether 553 5000 <loq< td=""> Pass n-Heptane 553 5000 <loq< td=""> Pass Hexanes 35.4 290 <loq< td=""> Pass</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	3-dimethylbutane	1 400	<loq< td=""><td>410</td><td>44.2</td><td>Acetonitrile</td></loq<>	410	44.2	Acetonitrile
n-Butane 553 <loq< th=""> iso-Butane 553 <loq< td=""> Chloroform 13.3 60 <loq< td=""> Pass Dichloromethane 66.4 600 <loq< td=""> Pass Ethanol 553 5000 <loq< td=""> Pass Ethyl acetate 553 5000 <loq< td=""> Pass Diethyl Ether 553 5000 <loq< td=""> Pass n-Heptane 553 5000 <loq< td=""> Pass Hexanes 35.4 290 <loq< td=""> Pass</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	2-Propanol (IPA)	F 455	<loq< td=""><td>2</td><td>0.885</td><td>Benzene</td></loq<>	2	0.885	Benzene
iso-Butane 553 <loq< td=""> Chloroform 13.3 60 <loq< td=""> Pass Dichloromethane 66.4 600 <loq< td=""> Pass Ethanol 553 5000 <loq< td=""> Pass Ethyl acetate 553 5000 <loq< td=""> Pass Diethyl Ether 553 5000 <loq< td=""> Pass n-Heptane 553 5000 <loq< td=""> Pass Hexanes 35.4 290 <loq< td=""> Pass</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	Isopropyl acetate	1 433	<loq< td=""><td>5000</td><td>553</td><td>Butanes</td></loq<>	5000	553	Butanes
Chloroform 13.3 60 <loq< th=""> Pass Dichloromethane 66.4 600 <loq< td=""> Pass Ethanol 553 5000 <loq< td=""> Pass Ethyl acetate 553 5000 <loq< td=""> Pass Diethyl Ether 553 5000 <loq< td=""> Pass n-Heptane 553 5000 <loq< td=""> Pass Hexanes 35.4 290 <loq< td=""> Pass</loq<></loq<></loq<></loq<></loq<></loq<></loq<>	Methanol		<loq< td=""><td></td><td>553</td><td>n-Butane</td></loq<>		553	n-Butane
Dichloromethane 66.4 600 <loq< th=""> Pass Ethanol 553 5000 <loq< td=""> Pass Ethyl acetate 553 5000 <loq< td=""> Pass Diethyl Ether 553 5000 <loq< td=""> Pass n-Heptane 553 5000 <loq< td=""> Pass Hexanes 35.4 290 <loq< td=""> Pass</loq<></loq<></loq<></loq<></loq<></loq<>	Pentanes		<loq< td=""><td></td><td>553</td><td>iso-Butane</td></loq<>		553	iso-Butane
Ethanol 553 5000 <loq< th=""> Pass Ethyl acetate 553 5000 <loq< td=""> Pass Diethyl Ether 553 5000 <loq< td=""> Pass n-Heptane 553 5000 <loq< td=""> Pass Hexanes 35.4 290 <loq< td=""> Pass</loq<></loq<></loq<></loq<></loq<>	n-Pentane	Pass	<loq< td=""><td>60</td><td>13.3</td><td>Chloroform</td></loq<>	60	13.3	Chloroform
Ethyl acetate 553 5000 <loq< th=""> Pass Diethyl Ether 553 5000 <loq< td=""> Pass n-Heptane 553 5000 <loq< td=""> Pass Hexanes 35.4 290 <loq< td=""> Pass</loq<></loq<></loq<></loq<>	iso-pentane	rass	<loq< td=""><td>600</td><td>66.4</td><td>Dichloromethane</td></loq<>	600	66.4	Dichloromethane
Diethyl Ether 553 5000 <loq< th=""> Pass n-Heptane 553 5000 <loq< td=""> Pass Hexanes 35.4 290 <loq< td=""> Pass</loq<></loq<></loq<>	neo-Pentane	Pass	<loq< td=""><td>5000</td><td>553</td><td>Ethanol</td></loq<>	5000	553	Ethanol
n-Heptane 553 5000 <loq< th=""> Pass Hexanes 35.4 290 <loq< td=""> Pass</loq<></loq<>	Propane	газэ	<loq< td=""><td>5000</td><td>553</td><td>Ethyl acetate</td></loq<>	5000	553	Ethyl acetate
Hexanes 35.4 290 <loq pass<="" td=""><td>Toluene</td><td>Pass</td><td><loq< td=""><td>5000</td><td>553</td><td>Diethyl Ether</td></loq<></td></loq>	Toluene	Pass	<loq< td=""><td>5000</td><td>553</td><td>Diethyl Ether</td></loq<>	5000	553	Diethyl Ether
	Xylenes	rass	<loq< td=""><td>5000</td><td>553</td><td>n-Heptane</td></loq<>	5000	553	n-Heptane
n-Hexane 35.4 <loq< td=""><td>m/p-Xylene</td><td>rass</td><td><loq< td=""><td>290</td><td>35.4</td><td>Hexanes</td></loq<></td></loq<>	m/p-Xylene	rass	<loq< td=""><td>290</td><td>35.4</td><td>Hexanes</td></loq<>	290	35.4	Hexanes
	o-Xylene		<loq< td=""><td></td><td>35.4</td><td>n-Hexane</td></loq<>		35.4	n-Hexane
3-Methylpentane 35.4 <loq< td=""><td>Ethyl benzene</td><td></td><td><loq< td=""><td></td><td>35.4</td><td>3-Methylpentane</td></loq<></td></loq<>	Ethyl benzene		<loq< td=""><td></td><td>35.4</td><td>3-Methylpentane</td></loq<>		35.4	3-Methylpentane
2,2-Dimethylbutane 35.4 <loq< td=""><td></td><td></td><td><loq< td=""><td></td><td>35.4</td><td>2,2-Dimethylbutane</td></loq<></td></loq<>			<loq< td=""><td></td><td>35.4</td><td>2,2-Dimethylbutane</td></loq<>		35.4	2,2-Dimethylbutane

Analyte	LOQ	Limit	Units	Q	Status
	ppm	ppm	ppm		
2-methylpentane/2,	70.8		<loq< td=""><td></td><td></td></loq<>		
3-dimethylbutane					_
2-Propanol (IPA)	553	5000	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Isopropyl acetate	553	5000	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Methanol	332	3000	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Pentanes	553	5000	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
n-Pentane	553		<loq< td=""><td></td><td></td></loq<>		
iso-pentane	553		<loq< td=""><td></td><td></td></loq<>		
neo-Pentane	553		<loq< td=""><td></td><td></td></loq<>		
Propane	553	5000	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Toluene	102	890	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
Xylenes	243	2170	<loq< td=""><td></td><td>Pass</td></loq<>		Pass
m/p-Xylene	487		<loq< td=""><td></td><td></td></loq<>		
o-Xylene	243		<loq< td=""><td></td><td></td></loq<>		
Ethyl benzene	243		<loq< td=""><td></td><td></td></loq<>		

LOQ = Limit of Quantitation: ND = Not Detected: Unless otherwise stated all quality control samples performed within specifications established by the Laboratory Solvents method: GC/MS

Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434

Jillian Blaney Technical Laboratory Director

AZDHS Certification # 00000005LCMI00301434

Catalina Hills / Venom 2046 W Ironwood Dr

Phoenix, AZ 85021 19289654611

Lic#: 00000016DCCC00020807 Sample Name: Monster GSC Distillate-I

Strain Name: Monster GSC

Matrix: Concentrates Extracts

FINAL

Sample: S308085-01 CC ID#: 2308C4L0077.2504

Lot#: N/A

Batch#: DIMON0817 Batch Size: N/A

> Sample Received: 08/18/2023 Report Created: 08/23/2023

Notes and Definitions

Item	Definition
I1	Interference. Relative intensity of a characteristic ion in the sample analyte exceeded 30% of the relative intensity in the reference spectrum.
L1	The percent recovery of the LCS was above the control limit for the test but analyte was not detected above the Action Limit in Table 3.1.
M1	Matrix Spike recovery was higher than control limit but recovery of the LCS was within control limits.
Q3	Testing result is for informational purposes only and cannot be used to satisfy dispensary testing requirements in R9-17-317.01(A) or labeling requirements in R9-17-317. Testing result is not accredited under ISO 17025.
R1	The RPD for the LCS/LCSD pair exceeded 20% but recoveries were within control limits.
V1	CCV recovery exceeded control limits but the sample analyte concentration was below maximum allowable concentrations in table 3.1
ND	Analyte NOT DETECTED at or above the reporting limit.
RPD	Relative Percent Difference
%REC	Percent Recovery
Source	Sample that was matrix spiked or duplicated.

7650 E. Evans Rd, Unit A Scottsdale, AZ 85260 (480) 219-6460 http://www.sclabs.com Lic.#0000005LCMI00301434

Jillian Blaney Technical Laboratory Director